started work on the loader

This commit is contained in:
David Westgate 2024-04-18 13:46:49 -07:00
parent de9838badc
commit 24c5e4401b
2 changed files with 120 additions and 0 deletions

View File

@ -0,0 +1,51 @@
import os
import sys
import time
import math
import numpy
from dotenv import load_dotenv
from bs4 import BeautifulSoup
from nltk.tokenize import WordPunctTokenizer, RegexpTokenizer
from sklearn.metrics.pairwise import cosine_similarity
from langchain import hub
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain.prompts import (
MessagesPlaceholder,
HumanMessagePromptTemplate,
ChatPromptTemplate,
PromptTemplate,
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_google_genai import (
GoogleGenerativeAI,
GoogleGenerativeAIEmbeddings,
ChatGoogleGenerativeAI,
HarmCategory,
HarmBlockThreshold,
)
from langchain_community.document_loaders import AsyncHtmlLoader, RecursiveUrlLoader
from langchain_community.document_transformers import BeautifulSoupTransformer
from langchain_community.vectorstores import Chroma
from langchain_openai import ChatOpenAI
from langchain_openai import OpenAI
from langchain_core.messages import HumanMessage
load_dotenv()
llm = OpenAI()
chat_model = ChatOpenAI(model="gpt-4")
text = "What is a good question to put here?"
messages = [HumanMessage(content=text)]
llm.invoke(text)
# >> Feetful of Fun
chat_model.invoke(messages)
# >> AIMessage(content="Socks O'Color")

69
hw1/loader.py Normal file
View File

@ -0,0 +1,69 @@
from langchain_community.document_loaders import AsyncHtmlLoader, DirectoryLoader, TextLoader, PyPDFDirectoryLoader, Docx2txtLoader, UnstructuredMarkdownLoader, WikipediaLoader, ArxivLoader, CSVLoader
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_community.document_loaders import WebBaseLoader
import bs4
"""
Loader attempting to load documents for the game Kerbal Space program two, both from wikipedia, as well as details from
the games own fan-run wiki, using GPT4
Code adapted from
1) https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_1_to_4.ipynb
2) https://codelabs.cs.pdx.edu/labs/G2.3_LangChainRAG
"""
# vectorstore = Chroma(
# embedding_function=GoogleGenerativeAIEmbeddings(model="models/embedding-001", task_type="retrieval_query"),
# persist_directory="./rag_data/.chromadb"
# )
# Load Documents
loader = WebBaseLoader(
web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
bs_kwargs=dict(
parse_only=bs4.SoupStrainer(
class_=("post-content", "post-title", "post-header")
)
),
)
docs = loader.load()
# Split
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
# Embed
vectorstore = Chroma.from_documents(documents=splits,
embedding=OpenAIEmbeddings())
def load_docs(docs):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=10)
splits = text_splitter.split_documents(docs)
vectorstore.add_documents(documents=splits)
def load_wikipedia(query):
load_docs(WikipediaLoader(query=query, load_max_docs=1).load())
def load_urls(urls):
load_docs(AsyncHtmlLoader(urls).load())
wiki_query = "Kerbel Space Program"
print(f"Loading Wikipedia pages on: {wiki_query}")
load_wikipedia(wiki_query)
urls = ["https://wiki.kerbalspaceprogram.com/wiki/Kerbin", "https://wiki.kerbalspaceprogram.com/wiki/Eve"]
print(f"Loading: {urls}")
load_urls(urls)
print("RAG database initialized with the following sources.")
retriever = vectorstore.as_retriever()
document_data_sources = set()
for doc_metadata in retriever.vectorstore.get()['metadatas']:
document_data_sources.add(doc_metadata['source'])
for doc in document_data_sources:
print(f" {doc}")